
International Journal of Information Technology (IJIT) – Volume 11 Issue 3, May - Jun 2025

ISSN: 2454-5424 www.ijitjournal.org Page 13

RelengDesk: An Enterprise Grade Release Engineering

Monitoring and Analytics System
Saumya Shrivastava*, Satyendra Tiwari**

Adobe Systems, Noida

 India

ABSTRACT
Modern software development environments face significant challenges in release engineering, particularly in managing

complex build processes, ensuring real-time status tracking, and generating actionable analytics. This paper presents

RelengDesk, a Spring Boot-based release engineering system that combines a microservices architecture with event-driven

processing using Apache Kafka and flexible data persistence with MongoDB. RelengDesk enables real-time build status

updates, comprehensive analytics, and dynamic channel selection for flexible event handling. The system's platform-agnostic

architecture allows integration with any CI/CD pipeline, providing centralized access control and customizable views per

product, while eliminating the limitations of traditional plugin-based solutions. By centralizing build tracking and analytics,

RelengDesk reduces the time required for teams to monitor and verify build statuses, accelerating feedback cycles and

enhancing productivity. The system's extensible design and robust error handling make it a strong candidate for enterprise

deployment in continuous integration and delivery environments.

Keywords :— Engineering, Build Tracking, Microservices Architecture, Event Processing, Real-Time Analytics

I. INTRODUCTION

Modern software development practices have introduced

significant challenges for release engineering [1].

Organizations must efficiently manage multiple concurrent

builds, provide real-time status updates, and generate

meaningful analytics [2]. The need for rapid deployment and

continuous integration has created a demand for sophisticated

build management solutions [3]. Additionally, maintaining

data consistency across distributed systems and ensuring

reliable error handling are now critical concerns in enterprise

environments. The scale of operations in large organizations,

where hundreds or thousands of builds may be processed

simultaneously, further exacerbates these challenges [4].

Traditional monitoring solutions, particularly those tied to

specific CI/CD platforms, present several limitations. These

include scattered job information across multiple plugins,

limited visibility into parallel builds within the same job, and

performance degradation due to API-based data fetching.

Furthermore, these solutions often struggle with multi-master

node architectures and lack the flexibility to adapt to different

CI/CD platforms. The reliance on platform-specific plugins

and APIs creates vendor lock-in, making it difficult for

organizations to switch between different CI/CD tools or

maintain multiple platforms simultaneously.

To address these issues, this research presents RelengDesk,

a comprehensive release engineering system designed to

efficiently handle multiple concurrent builds while providing

real-time status updates and analytics. The system emphasizes

robust error handling and logging to ensure reliable operation

under heavy load [5]. Furthermore, RelengDesk is built to

maintain data consistency across distributed systems and scale

effectively for enterprise-level build volumes [6]. Its platform-

agnostic architecture allows integration with any CI/CD

pipeline, not just Jenkins, providing a unified interface for

monitoring builds across multiple platforms.

The architecture of RelengDesk is designed to be flexible

and extensible, allowing seamless integration with existing

development tools and workflows. Its analytics capabilities

provide insights into build processes, helping organizations

identify and resolve bottlenecks in their development

pipelines [7]. By focusing on scalability, reliability, and

performance, RelengDesk aims to set new standards for

release engineering systems in enterprise environments. The

system's centralized access control mechanism eliminates the

need for individual platform permissions management,

significantly simplifying the administration of build access

across multiple instances.

In summary, this research contributes a robust, scalable,

and efficient solution for release engineering, supporting

organizations in achieving faster and more reliable software

delivery. RelengDesk's comprehensive approach to build

management, real-time analytics, and reliable error handling

makes it a valuable tool for improving release engineering

processes. The system's platform-agnostic design and

centralized access control provide a significant advantage over

traditional solutions, enabling organizations to maintain

flexibility in their choice of CI/CD tools while ensuring

efficient build monitoring and management.

II. LITERATURE REVIEW

A. Comparative Analysis of Existing Solutions

The evolution of release engineering solutions has been

marked by the emergence of both traditional and modern tools,

RESEARCH ARTICLE OPEN ACCESS

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 11 Issue 3, May - Jun 2025

ISSN: 2454-5424 www.ijitjournal.org Page 14

each with distinct strengths and limitations [8]. Traditional

build systems such as Jenkins, Bamboo, and TeamCity have

provided foundational support for build automation and

continuous integration. However, these platforms often

encounter scalability challenges and offer limited analytics,

making them less suitable for the demands of contemporary

enterprise environments [9]. Modern CI/CD platforms,

including GitHub Actions, GitLab CI, and CircleCI, have

introduced advanced features such as cloud-native integration

and seamless version control connectivity [10]. Despite these

enhancements, organizations frequently face issues related to

vendor lock-in and restricted customization, which can hinder

adaptation to specific infrastructure requirements.

General-purpose monitoring and analytics tools like Splunk,

Grafana, and Kibana are widely used for build tracking and

process monitoring. While these platforms offer robust data

visualization and analysis capabilities, their application to

release engineering typically requires significant

customization and configuration. For instance, Splunk excels

in log analysis but demands extensive dashboard and alert

setup for build tracking. Grafana provides powerful time-

series visualization but lacks native support for build process

monitoring. Kibana, though effective for log visualization,

necessitates Elasticsearch integration and considerable

configuration for build-specific use cases.

A comprehensive analysis of existing solutions reveals

distinct trade-offs between functionality, setup effort, and cost.

Table I presents a comparison of prominent monitoring

solutions available in the market:

TABLE I

COMPARISON OF EXISTING MONITORING SOLUTIONS

Solution Aggregates

Multiple

Masters?

Setup

Effort

Advantages Limitations

 Prometheus +

Grafana

Yes Medium Best for metrics & visual dashboards

 Highly customizable

 Open source

 Requires extensive setup for build monitoring

 No native build process tracking

 High learning curve

 Additional configuration needed for build-

specific metrics

 Jenkins

Operations

Center

Yes Low

(but

Paid)

 Enterprise-level control

 Easy setup

 Built-in security

 High licensing costs

 Difficult to switch to other solutions (vendor

lock-in)

 Limited customization

 Additional costs for scaling

RelengDesk

(Custom

Dashboard)

Yes Medium Platform-agnostic architecture

 Real-time build tracking

 Centralized access control

 Customizable views per product

 Parallel build monitoring

 Selective build display

 No impact on Jenkins master performance

 Initial setup required

 Custom build service integration needed

 Requires maintenance

Build Monitor
View Plugin

No Low Visual job dashboard

 Easy to install

 Basic monitoring

 Limited to single Jenkins instance

 No multi-master support

 Basic features only

 No advanced analytics

Jenkins API Yes Medium Direct access to Jenkins data

 Flexible integration

 Real-time data

 Performance impact on Jenkins master

 API rate limiting

 Requires custom development

 No built-in visualization

Existing monitoring solutions, particularly Jenkins plugins,

present several limitations that impact their effectiveness in

enterprise environments. These limitations include scattered

job information across multiple plugins, limited visibility into

parallel builds within the same job, inability to selectively

display build information, and performance degradation due to

API-based data fetching. Furthermore, these solutions often

struggle with multi-master node architectures and lack the

flexibility to adapt to different CI/CD platforms.

B. Technology Stack Analysis

1) Spring Boot Framework: Spring Boot serves as the

core framework for RelengDesk, offering production-ready

features such as embedded servers, security, and monitoring

capabilities [11]. Its robust dependency injection and strong

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 11 Issue 3, May - Jun 2025

ISSN: 2454-5424 www.ijitjournal.org Page 15

typing ensure maintainable and reliable code, while its

performance in handling concurrent requests makes it ideal for

high throughput build processing. The mature Spring

ecosystem and comprehensive documentation further enhance

its suitability for enterprise applications.

2) MongoDB Database: MongoDB is selected as the

primary data store to accommodate the flexible and diverse

nature of build artifacts and metadata [12]. Its schema-less

design supports efficient storage and retrieval of varied data

types, while high performance and horizontal scalability

enable the management of large build volumes and concurrent

operations. MongoDB’s advanced query capabilities facilitate

complex analytics and real-time status updates, and its

replication and sharding features ensure data reliability in

distributed environments.

3) Apache Kafka: Apache Kafka is integrated to provide

robust event processing, essential for modern release

engineering systems [13]. Kafka’s high throughput and fault

tolerance support efficient processing and reliable delivery of

build events, even during system failures. Its scalability and

message persistence features ensure that no build events are

lost, maintaining system integrity during restarts or outages.

The implementation of RelengDesk is guided by key

software engineering principles to ensure robustness,

scalability, and maintainability [15]. Modularity is achieved

by defining clear interfaces for each service domain and

implementing them

C. Comparison with Alternative Technologies

The technical implementation of RelengDesk demonstrates

significant advantages over alternative monitoring solutions in

several key areas. Traditional solutions often rely on direct

API calls to Jenkins master, causing performance degradation

during high load scenarios [8]. In contrast, RelengDesk's

event-driven architecture using Kafka ensures efficient event

processing without impacting build performance. The system's

microservices architecture enables independent scaling of

components based on load, providing better resource

utilization and system stability.

In terms of data management and analytics, RelengDesk's

MongoDB-based data model is optimized for build tracking

and analytics, providing real-time insights without additional

data processing overhead. This optimization enables faster

query response times and more efficient resource utilization,

particularly in environments with large numbers of concurrent

builds. The system's architecture eliminates the need for

complex data transformations required by general-purpose

tools, resulting in more efficient and reliable build monitoring.

The integration and extensibility of RelengDesk sets it

apart from traditional solutions that are tightly coupled with

specific CI/CD platforms [14]. The system's platform-agnostic

design allows integration with any CI/CD pipeline, providing

organizations with the flexibility to use their preferred tools

while maintaining centralized monitoring and control. The

modular architecture enables easy addition of new features

and integrations, ensuring the system can evolve with

changing requirements and technologies.

Performance and resource utilization are critical factors in

enterprise environments, where traditional API-based

solutions often impact Jenkins master performance during

high load. RelengDesk's asynchronous event processing

ensures minimal impact on build systems, while its efficient

resource utilization enables handling of large-scale build

operations [4]. This approach results in more reliable build

monitoring and better overall system performance.

Security and access control represent another area where

RelengDesk provides significant advantages. Traditional

solutions require separate permission management for each

platform, increasing administrative overhead and potential

security risks [7]. RelengDesk's centralized access control

provides unified authentication and authorization,

implementing enterprise-grade security features while

maintaining flexibility. This centralized approach simplifies

security management and ensures consistent access control

across all integrated systems.

These technical advantages position RelengDesk as a

superior solution for enterprise release engineering

environments, particularly in scenarios requiring high

scalability, real-time monitoring, and platform flexibility [10].

The system's architecture and implementation choices address

the limitations of existing solutions while providing enhanced

functionality and performance. By focusing on these key

technical aspects, RelengDesk delivers a more robust,

efficient, and maintainable solution for modern release

engineering challenges.

III. METHODOLOGY

A. System Architecture

The architecture of RelengDesk is designed to centralize

and streamline the release engineering process by integrating

build tracking, event processing, and analytics within a

modular, microservices-based system [14]. As shown in Fig. 1,

the platform is organized around several core services that

interact through well-defined channels and persistent data

stores. This modular separation ensures that each component

can be developed, deployed, and scaled independently,

supporting both reliability and extensibility [1].

A key architectural aspect of the system is its layered

design and dynamic channel selection mechanism. The system

is organized into distinct layers: External Layer, API Layer,

Service Layer, Data Layer, and Database Layer. The Build

Service, comprising multiple builder instances, determines the

appropriate communication channel—either synchronous API

or asynchronous Kafka—based on the current system

configuration, which is stored and retrieved from a local cache.

This design allows the system to switch to Kafka-based

processing under high request volumes for scalability and

stability, or to use the API channel for lower volumes and

immediate processing. Build events are routed accordingly,

ensuring efficient and flexible event handling. The

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 11 Issue 3, May - Jun 2025

ISSN: 2454-5424 www.ijitjournal.org Page 16

RelengDesk Service acts as the central coordinator, processing

incoming events, updating MongoDB for persistent storage,

and providing real-time status updates to the dashboard. The

service also exposes an endpoint for dynamically retrieving

the current channel configuration, further enhancing system

adaptability and operational flexibility.

B. Implementation Approach

The implementation of RelengDesk adheres to key software

engineering principles to ensure robustness, scalability, and

maintainability [15]. Modularity is achieved by defining clear

interfaces for each service domain and implementing them in

separate classes, enabling independent development, testing,

and deployment. For example, build tracking and analytics

services can be scaled or updated independently, minimizing

system-wide risks.

Scalability is addressed through stateless service

implementations, allowing horizontal scaling via multiple

service instances. Load balancing is managed by the

underlying infrastructure, and efficient resource utilization is

achieved through careful management of dependencies and

data access patterns. Kafka further enhances scalability by

decoupling event producers and consumers.

Reliability is ensured through comprehensive error

handling and data consistency mechanisms. Aspect-Oriented

Programming (AOP) is used for cross-cutting concerns such

as exception handling and logging, ensuring consistent error

management. Data consistency is maintained through

transactional repository operations and robust event

processing. Fault tolerance is achieved via Kafka's message

persistence and MongoDB's replication and sharding features.

The system is designed for extensibility, with interfaces and

dependency injection facilitating the integration of new

features or the replacement of components. Additional

analytics modules or alternative data stores can be

incorporated with minimal changes to the codebase.

C. Architectural and Workflow Diagrams

To provide a comprehensive understanding of the system’s

architecture and workflow, a few UML diagrams are

presented in this section. Each diagram highlights a different

aspect of the RelengDesk platform, including high-level

design, core service interactions, data flow, and channel

selection mechanisms. These diagrams illustrate the modular

structure, component relationships, and key processes

underpinning system functionality, facilitating a clearer

explanation of design decisions and operational principles.

Fig. 1 Illustration of RelengDesk's data flow, where the Build Service

transmits data through API/Kafka channels to the Tracker Service, which
processes and stores build information in MongoDB while updating the Front-

end Service.

Fig. 2 Depiction of the flow of build data from external sources
(API/Kafka) through the service layer (BuildTrackingService,

AnalyticsService, KafkaConsumerService) to MongoDB storage via

repository interfaces.

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 11 Issue 3, May - Jun 2025

ISSN: 2454-5424 www.ijitjournal.org Page 17

Fig. 3 Illustration of the modular architecture of RelengDesk, which monitors and analyzes build artifacts from Jenkins CI/CD pipelines across multiple

platforms. It shows the integration of build status tracking and analytics modules, with service interfaces and implementations managing the build lifecycle,

real-time monitoring, and analytics. The clear relationships between core entities highlight the system’s extensibility and efficient coordination between

tracking and analytics functionalities.

These diagrams illustrate the modular structure, component

relationships, and key processes underpinning system

functionality, facilitating a clearer explanation of design

decisions and operational principles.

IV. IMPLEMENTATION DETAILS

A. System Architecture and Core Components

The implementation of RelengDesk is structured around a

set of core components, each responsible for a distinct aspect

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 11 Issue 3, May - Jun 2025

ISSN: 2454-5424 www.ijitjournal.org Page 18

of the release engineering workflow [9]. The primary

components include the Build Service, RelengDesk Service,

Analytics Service, and Event Processing Service. The Build

Service is designed to be platform-agnostic, supporting

integration with various CI/CD pipelines such as Jenkins,

CircleCI, and others. This is achieved through a cluster of

builder instances and custom scripts that push build events to

the backend based on stage and job-level notifications.

The RelengDesk Service acts as the central coordinator,

receiving build events via either synchronous API calls or

asynchronous Kafka messages [12], as determined by the

dynamic channel selection mechanism. This service processes

incoming events, updates build statuses and orchestrates the

flow of information throughout the system. It also manages

persistent storage in MongoDB and provides real-time status

updates to the dashboard for user visibility. The Analytics

Service operates independently from the core build tracking

logic, aggregating build metrics, tracking failures, and

analyzing performance characteristics. This separation allows

for independent scaling and evolution of analytics capabilities,

ensuring that performance analysis does not impact core build

management. The Event Processing Service, implemented

using Apache Kafka, enables asynchronous processing of

build events, ensuring reliable event handling even under

heavy load or transient failures.

B. Data Management and Service Layer

The data models in RelengDesk are designed to capture

essential information for effective build tracking and analytics

[6]. The primary data entities are the Build and BuildAnalytics

classes, each annotated as a persistent entity for storage in

MongoDB. The Build entity encapsulates all relevant

information about a software build, including a unique

identifier, current status, timestamps for the start and end of

the build process, a list of generated artifacts, and a flexible

metadata map for additional build-related information. This

design accommodates a wide range of build scenarios, from

simple single-step builds to complex, multi-stage pipelines,

and allows the system to adapt to evolving requirements

without changes to the underlying schema.

The service layer in RelengDesk is implemented using the

Spring Framework, leveraging its dependency injection and

component management features [11]. Each core service is

defined as an interface, with a corresponding implementation

encapsulating the business logic. This approach promotes

loose coupling and testability, allowing for easy substitution

or extension of service implementations as requirements

evolve.

C. User Interface and Analytics

The live tracking dashboard in RelengDesk provides users

with a comprehensive, real-time overview of ongoing and

recent builds across multiple products and platforms.

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 11 Issue 3, May - Jun 2025

ISSN: 2454-5424 www.ijitjournal.org Page 19

Fig. 4 RelengDesk Live Tracking Dashboard showing real-time build status across multiple products. Product names and other sensitive information have

been anonymized for confidentiality.

Fig. 5 Detailed build view and pipeline visualization in RelengDesk.

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 11 Issue 3, May - Jun 2025

ISSN: 2454-5424 www.ijitjournal.org Page 20

Fig. 6 Build Time Graph in RelengDesk analytics dashboard.

Note: The product names and certain details in the dashboard screenshot have been modified to protect proprietary information.

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 11 Issue 3, May - Jun 2025

ISSN: 2454-5424 www.ijitjournal.org Page 21

Fig. 7 Stage Status Graph in RelengDesk analytics dashboard. For confidentiality reasons, the product names and some metadata in the dashboard

screenshots have been anonymized.

As shown in Fig. 4, the dashboard displays a grid of build

cards, each representing a product build with key metadata

such as build version, trigger time, and platform. Color-coded

status indicators and customizable filters allow users to

quickly assess the state of each build, identify successful and

failed jobs, and focus on relevant products or groups. Users

can drill down into individual builds to access detailed

information, including job names, build numbers, start and

end times, and associated metadata. The build pipeline

visualization (see Fig. 5) presents each stage’s status and

duration, enabling users to track progress, pinpoint

bottlenecks, and analyze failures within the build process.

This intuitive interface supports rapid feedback cycles,

efficient monitoring, and data-driven decision-making for

engineering teams.

The analytics dashboard in RelengDesk offers

comprehensive visualizations and insights into build

performance and trends [2]. As illustrated in Fig. 6, users can

view build time graphs that display the duration of recent

builds for a selected product, enabling quick identification of

outliers and performance bottlenecks. Interactive filters allow

users to refine analytics by product, version, branch, platform,

and build type, supporting targeted analysis. Additionally, the

stage status graph (Fig. 7) breaks down the duration of

individual pipeline stages within a specific build, helping

teams pinpoint stages that contribute most to overall build

time. These analytics features empower engineering teams to

monitor trends, optimize build configurations, and make data-

driven decisions to improve efficiency and reliability in the

release engineering process.

D. Integration and Extensibility

A key innovation in RelengDesk is its centralized access

control mechanism, which provides unified authentication and

authorization across multiple CI/CD platforms, eliminating

the need for individual permissions management. The system

also supports customizable views per product, parallel build

monitoring, and selective build display, addressing limitations

found in traditional plugin-based solutions. The modular and

extensible design allows for the integration of additional

analytics modules, alternative data stores, or new event

processing channels with minimal changes to the existing

codebase.

RelengDesk is designed to be platform-agnostic and easily

integrable with a variety of external CI/CD systems. A key

aspect of this integration is the custom Build Service, which

consists of a cluster of Python scripts utilized during the build

process. These scripts are embedded within the build pipelines

of external systems such as Jenkins, CircleCI, or other CI/CD

tools. During the execution of a build, these scripts are

triggered at both the stage and job levels. They are responsible

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 11 Issue 3, May - Jun 2025

ISSN: 2454-5424 www.ijitjournal.org Page 22

for collecting relevant build data and pushing structured event

notifications to the RelengDesk backend. This is achieved

through API calls or by publishing events to Kafka, depending

on the configured channel. The event payloads include

detailed metadata such as build identifiers, status, timestamps,

platform information, and any custom attributes required for

analytics or monitoring. This approach enables seamless

integration with heterogeneous build environments, allowing

RelengDesk to aggregate and monitor builds across multiple

platforms without being tightly coupled to any specific CI/CD

tool. The modularity of the Build Service scripts also allows

for easy extension or adaptation to new build systems as

organizational requirements evolve.

By leveraging lightweight, script-based integration,

RelengDesk ensures minimal overhead on the build process

while providing comprehensive, real-time visibility into build

activities across the enterprise.

V. RESULT & DISCUSSION

A. System Performance and User Experience

The deployment of RelengDesk in enterprise environments

has resulted in notable improvements in the efficiency and

transparency of release engineering processes. The live

tracking dashboard provides real-time visibility into the status

of multiple builds and products, enabling engineering teams to

monitor progress, promptly identify issues, and respond

proactively to failures or bottlenecks. The user interface,

featuring customizable views and color-coded status

indicators, has been positively received, facilitating rapid

feedback cycles and reducing the cognitive load associated

with monitoring complex build pipelines.

The analytics dashboard further enhances decision-making

by presenting aggregated build statistics, error trends, and

resource utilization metrics. This functionality enables teams

to identify recurring issues, optimize build configurations, and

allocate resources more effectively. The ability to filter and

analyze historical data supports continuous improvement and

fosters a data-driven culture within release engineering teams

[17].

B. Enterprise Integration and Comparative Analysis

RelengDesk's platform-agnostic architecture and script-

based integration approach have proven effective in

heterogeneous enterprise environments [14]. By decoupling

build event collection from any specific CI/CD tool, the

system supports seamless aggregation and monitoring of

builds across multiple platforms. The centralized access

control mechanism simplifies permissions management and

enhances security, while the modular design allows for

straightforward extension and adaptation to evolving

organizational requirements.

In comparison to traditional plugin-based monitoring tools

and general-purpose analytics platforms, RelengDesk offers

several distinct advantages. The unified dashboard

consolidates build information from disparate sources,

eliminating the need for users to navigate multiple interfaces

or manage scattered plugins. The system's support for parallel

build monitoring, selective build display, and real-time

analytics addresses key limitations of existing solutions,

particularly in large-scale, multi-team environments [3].

The adoption of RelengDesk has led to measurable

improvements in operational efficiency, including faster issue

detection, reduced build verification time, and enhanced

collaboration between development and release engineering

teams [16]. The system's extensibility ensures that new

analytics modules, data sources, or integration points can be

incorporated with minimal disruption, supporting ongoing

process optimization and alignment with best practices in

DevOps and continuous delivery.

C. Limitations and Future Directions

While RelengDesk provides comprehensive build tracking

and basic analytics, the system currently lacks advanced

predictive capabilities and real-time anomaly detection. The

existing analytics implementation focuses primarily on

historical data aggregation and basic error counting, without

the ability to predict potential build failures or detect unusual

patterns in real-time. Future work should focus on

implementing machine learning models for predictive

analytics and developing real-time anomaly detection

algorithms to enhance the system's proactive monitoring

capabilities [17].

VI. CONCLUSIONS

This paper has presented the design and implementation of

RelengDesk, an enterprise-grade release engineering

monitoring and analytics system. By leveraging a modular

microservices architecture, event-driven processing, and a

platform-agnostic integration approach, RelengDesk addresses

key challenges faced in modern release engineering, including

the need for real-time build tracking, comprehensive analytics,

and seamless integration with heterogeneous CI/CD

environments.

The system's live tracking and analytics dashboards provide

engineering teams with real-time visibility and actionable

insights, supporting rapid feedback cycles and data-driven

decision-making. The centralized access control mechanism

and customizable user interface further enhance usability,

security, and operational efficiency. RelengDesk's extensible

design allows for straightforward adaptation to evolving

organizational requirements and integration with additional

tools and platforms.

Compared to traditional plugin-based and general-purpose

monitoring solutions, RelengDesk offers significant

advantages in terms of flexibility, scalability, and user

experience. Its ability to aggregate build data across multiple

platforms, support parallel build monitoring, and provide

selective build display addresses critical limitations of existing

tools.

In summary, RelengDesk represents a robust, extensible,

and high-performance solution for enterprise release

http://www.ijitjournal.org/

International Journal of Information Technology (IJIT) – Volume 11 Issue 3, May - Jun 2025

ISSN: 2454-5424 www.ijitjournal.org Page 23

engineering, empowering organizations to accelerate software

delivery, reduce operational risk, and make informed, data-

driven decisions. The system's successful deployment in

production environments demonstrates its practical value and

effectiveness in real-world scenarios. As organizations

continue to adopt cloud-native architectures and microservices,

RelengDesk's platform-agnostic approach and scalable design

position it as a valuable tool for modern software development

teams.

ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to

their mentors and colleagues at Adobe Systems for their

continuous support and valuable feedback throughout the

course of this research. Special thanks are extended to the

software engineering team for their assistance with system

implementation and testing. The authors also appreciate the

encouragement and guidance provided by their families and

friends. Finally, the open-source community and the

developers of the tools and frameworks utilized in this work

are gratefully acknowledged for their contributions, which

made this research possible.

REFERENCES

[1] J. Anderson and S. Park, "Next-Generation Event-Driven

Architectures: Patterns and Implementation Strategies,"

ACM Comput. Surv., vol. 56, no. 2, pp. 1-35, Feb. 2024.

[2] L. Martinez and R. Chen, "Real-time Analytics in Cloud-

Native Applications: A Comprehensive Study," IEEE

Trans. Cloud Comput., vol. 12, no. 2, pp. 112-128, Mar.

2024.

[3] T. Brown and M. Davis, "Event-Driven Systems in the

Age of Cloud Computing: Challenges and Solutions," J.

Cloud Comput., vol. 13, no. 1, pp. 45-62, Jan. 2024.

[4] M. Wilson and P. Taylor, "Error Handling in Distributed

Systems: A Modern Approach," J. Distrib. Comput., vol.

36, no. 2, pp. 78-92, Apr. 2023.

[5] A. Johnson and B. Smith, "Build Systems in Modern

Software Development: A Comprehensive Analysis,"

IEEE Trans. Softw. Eng., vol. 49, no. 3, pp. 156-170,

Mar. 2023.

[6] J. Lee and H. Kim, "Data Synchronization in Cloud-

Native Distributed Systems: A Contemporary Analysis,"

IEEE Trans. Cloud Comput., vol. 12, no. 2, pp. 45-62,

Feb. 2024.

[7] S. Hassan, A. Hindle, and E. Stroulia, "Release

Engineering in the Era of Continuous Delivery:

Challenges and Opportunities," IEEE Software, vol. 38,

no. 2, pp. 54-61, Mar.-Apr. 2021.

[8] M. Shahin, M. Ali Babar, and L. Zhu, "Continuous

Integration, Delivery and Deployment: A Systematic

Review on Approaches, Tools, Challenges and

Practices," IEEE Access, vol. 8, pp. 39001-39035, 2020.

[9] J. Soldani, D. A. Tamburri, and W. van den Heuvel,

"The pains and gains of microservices: A Systematic

grey literature review," Journal of Systems and Software,

vol. 146, pp. 215-232, Dec. 2018.

[10] S. Newman, Building Microservices: Designing Fine-

Grained Systems, 2nd ed. Sebastopol, CA, USA:

O'Reilly Media, 2021.

[11] P. Webb, "Spring Boot Reference Documentation,"

Pivotal Software, 2023. [Online]. Available:

https://docs.spring.io/spring-

boot/docs/current/reference/htmlsingle/

[12] M. Rodriguez and A. Kumar, "Advanced Event

Processing with Apache Kafka: A Study of Modern

Real-time Data Architectures," IEEE Trans. Cloud

Comput., vol. 12, no. 1, pp. 78-95, Jan. 2024.

[13] A. Gokhale, D. C. Schmidt, and B. Natarajan, "Event-

Driven Architecture for Cloud-Native Applications: A

Case Study," IEEE Cloud Computing, vol. 8, no. 1, pp.

36-45, Jan.-Feb. 2021.

[14] D. Taibi, V. Lenarduzzi, and C. Pahl, "Architectural

Patterns for Microservices: A Systematic Mapping

Study," IEEE Trans. Softw. Eng., vol. 47, no. 11, pp.

2446-2466, Nov. 2021.

[15] S. Bass, I. Weber, and L. Zhu, DevOps: A Software

Architect's Perspective, 2nd ed. Boston, MA, USA:

Addison-Wesley, 2022.

[16] S. Krusche and L. Alperowitz, "Introduction of

Continuous Integration and Continuous Delivery in a

Legacy Software Project," Empirical Software

Engineering, vol. 25, pp. 492-526, 2020.

[17] S. Amershi et al., "Software Engineering for Machine

Learning: A Case Study," in Proc. 41st Int. Conf. Softw.

Eng. (ICSE-SEIP), Montreal, QC, Canada, 2019, pp.

291-300, doi: 10.1109/ICSE-SEIP.2019.00042.

http://www.ijitjournal.org/

